

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	bolos 0.1 documentation

Documentation for bolos

BOLOS is a BOLtzmann equation solver Open Source library.

This package provides a pure Python library for the solution of the
Boltzmann equation for electrons in a non-thermal plasma. It builds upon
previous work, mostly by G. J. M. Hagelaar and L. C. Pitchford [HP2005],
who developed BOLSIG+ [http://www.bolsig.laplace.univ-tlse.fr/]. BOLOS is a multiplatform, open source
implementation of a similar algorithm compatible with the BOLSIG+ [http://www.bolsig.laplace.univ-tlse.fr/]
cross-section input format.

The code was developed by Alejandro Luque [http://www.iaa.es/~aluque] at the
Instituto de Astrofísica de Andalucía [http://www.iaa.es] (IAA), CSIC [http://www.csic.es] and is released under the LGPLv2 License [http://www.gnu.org/licenses/lgpl-2.0.html]. Packages can be
downloaded from the project homepage [http://pypi.python.org/pypi/bolos/] on PyPI. The
source code [https://github.com/aluque/bolos] can be obtained from
GitHub, which also hosts the bug tracker [https://github.com/aluque/bolos/issues]. The documentation [http://bolos.readthedocs.org/] can be
read on ReadTheDocs.

Contents:

	1. Tutorial
	1.1. Installation

	1.2. First steps

	1.3. Loading cross-sections

	1.4. Setting the conditions

	1.5. Obtaining the EEDF

	1.6. Calculating transport coefficients and reaction rates

	1.7. Learn more

	2. Frequently Asked Questions
	2.1. Why another Boltzmann solver?

	2.2. Why did you use Python?

	2.3. What version(s) of Python does BOLOS support?

	2.4. Can BOLOS read cross-sections in BOLSIG+ format?

	2.5. How fast is BOLOS?

	2.6. Are results the same as with BOLSIG+?

	2.7. Feature X is not implemented: what can I do?

	2.8. If I use BOLOS for my research, which paper should I cite?

	3. Bolos API reference
	3.1. The solver Module

	3.2. The grid Module

	3.3. The parser Module

Indices and tables

	Index

	Module Index

	Search Page

	[HP2005]	Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14 (2005) 722–733.

 Copyright 2014, Alejandro Luque.
 Last updated on Jun 12, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	bolos 0.1 documentation

1. Tutorial

This tutorial will guide you through all the step that you must follow in order
to use BOLOS in your code to solve the Boltzmann equation.

1.1. Installation

BOLOS is a pure Python package and it sticks to the Python conventions for the
distribution of libraries. Its only dependencies are NumPy and SciPy. See here [http://scipy.org/install.html] for installation instructions of these packages for your operating system.

There are a few ways to have BOLOS installed in your system:

	Download the full source repo from github:

git clone https://github.com/aluque/bolos.git

This will create a bolos folder with the full code, examples and
documentation source. You can then install bolos by e.g. typing:

python setup.py install

Alternatively since BOLOS is pure python package, you can put the bolos/
sub-folder to whatever place where it can be found by the Python
interpreter (including your PYTHONPATH).

	You can use the Python Package Index (PyPI). From there you can download
a tarball or you can instruct pip to download the package for you
and install it in your system:

pip install bolos

1.2. First steps

To start using bolos from your Python, import the required modules:

from bolos import parser, grid, solver

Usually you only need to import these three packages:

	parser contains methods to parse a file with cross-sections in
BOLSIG+ format,

	grid allows you to define different types of grids in energy space.

	solver contains the solver.BoltzmannSolver, which the class that
you will use to solve the Boltzmann equation.

Now you can define an energy grid where you want to evaluate the electron
energies. The :module:`grid` contains a few classes to do this. The simplest
one defines a linear grid. Let’s create a grid extending from 0 to 20 eV with
200 cells:

gr = grid.LinearGrid(0, 60., 200)

We want to use this grid in a solver.BoltzmannSolver instance that
we initialize as:

boltzmann = solver.BoltzmannSolver(gr)

1.3. Loading cross-sections

The next step is to load a set of cross-sections for the processes that
will affect the electrons. BOLOS does not come with any set of
cross-sections. You can obtain them from the great database LxCat [http://fr.lxcat.net/]. BOLOS can read without changes files downloaded from LxCat.

Now let’s tell boltzmann to load a set of cross-sections from a file named
lxcat.dat:

with open('lxcat.dat') as fp:
 processes = parser.parse(fp)
boltzmann.load_collisions(processes)

Do not worry if there are processes for species that you do not want to include:
they will be ignored by BOLOS without a performance penalty.

1.4. Setting the conditions

Now we have to set the conditions in our plasma. First, we set the molar fractions; for example for synthetic air we do:

boltzmann.target['N2'].density = 0.8
boltzmann.target['O2'].density = 0.2

Note that this process requires that you have already loaded cross-sections for
the targets that you are setting. Also, BOLOS does not check if the
molar fractions add to 1: it is the user’s responsibility to select
reasonable molar fractions.

Next we set the gas temperature and the reduced electric field. BOLOS
expect a reduced electric field in Vm^2 and a temperature in eV.
However, you can use some predefined constants if you prefer to think
in terms of Kelvin and Townsend. Here we set a temperature of 300K
and a reduced electric field of 120 Td:

boltzmann.kT = 300 * solver.KB / solver.ELECTRONVOLT
boltzmann.EN = 120 * solver.TOWNSEND

After you set these conditions, you must tell BOLOS to update its
internal state to take them into account. You must do this whenever
you change kT, EN or the underlying grid:

boltzmann.init()

1.5. Obtaining the EEDF

We have now everything in place to solve the Boltzmann equation.
Since the solver is iterative, we must start with some guess; it does
not make much difference which one as long as it is not too
unreasonable. For example, we can start with Maxwell-Boltzmann
distribution with a temperature of 2 eV:

fMaxwell = boltzmann.maxwell(2.0)

Now we ask boltzmann to iterate the solution until it is satisfied
that it has converged:

f = boltzmann.converge(fMaxwell, maxn=100, rtol=1e-5)

Here maxn is the maximum number of iterations and rtol is the
desired tolerance.

We now have a distribution function in f that is a reasonable
approximation to the exact solution. However, we made some arbitrary
choices in order to calculate it and perhaps we may still get a more
accurate one. For example, why did we select a grid from 0 to 60 eV
with 200 cells? Perhaps we should base our grid on the mean energy of
electrons:

Calculate the mean energy according to the first EEDF
mean_energy = boltzmann.mean_energy(f0)

Set a new grid extending up to 15 times the mean energy.
Now we use a quadritic grid instead of a linear one.
newgrid = grid.QuadraticGrid(0, 15 * mean_energy, 200)

Set the new grid and update the internal
boltzmann.grid = newgrid
boltzmann.init()

Calculate an EEDF in the new grid by interpolating the old one
finterp = boltzmann.grid.interpolate(f, gr)

Iterate until we have a new solution
f1 = boltzmann.converge(finterp, maxn=200, rtol=1e-5)

1.6. Calculating transport coefficients and reaction rates

Often you are not interested in the EEDF itself but you are working
with a fluid clode and you want to know the transport coefficients and
reaction rates as functions of temperature or E/n.

It’s quite easy to obtain the reduced mobility and diffusion rate once
you have the EEDF:

mun = boltzmann.mobility(f1)
diffn = boltzmann.diffusion(f1)

This tells you the reduced mobility mu*n and diffusion D*n, both
in SI units.

To calculate reaction rates, use solver.BoltzmannSolver.rate().
There are a couple of manners in which you can specify the process.
You can use its signature:

Obtain the reaction rate for impact ionization of molecular nitrogen.
k = boltzmann.rate(f1, "N2 -> N2^+")

This is equivalent to the following sequence:

proc = boltzmann.search("N2 -> N2^+")[0]
k = boltzmann.rate(f1, proc)

Here we have first looked in the set of reactions contained in the
boltzmann instance for a process matching the signature “N2 ->
N2^+”. solver.BoltzmannSolver.search() returns a
process.Process instance that you can then pass to
solver.BoltzmannSolver.rate().

The methods solver.BoltzmannSolver.iter_all(),
solver.BoltzmannSolver.iter_elastic() and
solver.BoltzmannSolver.iter_inelastic() let you iterate over the
targets and processes contained in a solver.BoltzmannSolver
instance. (These are the processes that we loaded earlier with
soler.BoltzmannSolver.load_collisions())

for target, proc in boltzmann.iter_inelastic():
 print "The rate of %s is %g" % (str(proc), boltzmann.rate(f1, proc))

1.7. Learn more

BOLOS is an ongoing effort and some of its features are not yet
properly implemented or documented. If you want to learn more you can
go to the samples/ folder in the github repository. The code
contains lots of (hopefully useful) comments, so if you want to
understand better how to use or extend BOLOS, you should also read
that.

 Copyright 2014, Alejandro Luque.
 Last updated on Jun 12, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	bolos 0.1 documentation

2. Frequently Asked Questions

2.1. Why another Boltzmann solver?

The low-temperature plasma community already has
BOLSIG+ [http://www.bolsig.laplace.univ-tlse.fr/], a highly optimized,
user-friendly solver for the Boltzmann equation [HP2005]. BOLSIG+ is
freely distributed by its authors, Hagelaar and Pitchford. Why did I write
BOLOS, another Boltzmann solver based on similar algorithms?

The simplest reply is that, as a BOLSIG+ user, I wanted to understand better
what goes on beneath BOLSIG+ and the best way to understand something is
to do it yourself.

However, I also felt that an Open Source
implementation would benefit the community. There are a number of
drawbacks to the way BOLSIG+ is packaged that sometimes limited or
slowed down my own research. For example, we only have a Windows
version, whereas many of us now use Linux or Mac OS X as their
platforms of choice. Also, since BOLSIG+ is distributed only as
binary package, it is difficult or impossible to integrate into other
codes or to make it part of an automated pipeline.

Finally, there is the old hacker ethic, where we tinker with each
other’s code and tools and collaborate to improve them. This is
particularly relevant for scientists, since we all build on the work of
others. Having an open source, modern, Boltzmann solver may
facilitate new improvements and its integration with other tools.

2.2. Why did you use Python?

Because my main purpose was to develop a simple, readable code in the
hope that other people would take it and perhaps improve it.

The code relies on the Numpy [http://www.numpy.org/] and
SciPy [http://www.scipy.org/] libraries that interface with
highly optimized, C or FORTRAN code.

2.3. What version(s) of Python does BOLOS support?

Presently, only 2.7. In future release, Python 3+ will be supported.
Since BOLOS is a pure Python package, the transition should be
straightforward.

2.4. Can BOLOS read cross-sections in BOLSIG+ format?

Yes! You can use your cross-sections files from
BOLSIG+ [http://www.bolsig.laplace.univ-tlse.fr/] or from
LxCat [http://fr.lxcat.net/]
without changes. Any problem reading these files will be treated as a
bug.

2.5. How fast is BOLOS?

I would say it’s reasobaly fast. It takes a few tenths of a second to
solve the Boltzmann equation. The code was heavily optimized to use numpy’s
and scipy’s features, particularly regarding sparse matrices.

2.6. Are results the same as with BOLSIG+?

In most cases the difference in reaction rates or transport parameters is
between 0.1% and 1%. My guess is that most of the difference comes from the
use of different grids but probably the growth-renormalization term is
implemented differently (Hagelaar and Pitchford are not very clear on this
point).

Here is a comparison between nitrogen ionization rates in synthetic air as
calculated by BOLOS and BOLSIG+:

You can find the complete set of comparisons for synthetic air here [https://plot.ly/~aluque/1/].

2.7. Feature X is not implemented: what can I do?

Yes, there are still many features that are not implemented in BOLOS.
In particular, only the temporal growth model is implemented and many parameters obtained from the EEDF are not yet implemented. I hope
to add these things gradually. If you are interested in a particular
feature you can give it a shot: pull requests are welcome. Or you can write
me and I promise that I will look into it... but you know how tight all our agendas are.

2.8. If I use BOLOS for my research, which paper should I cite?

BOLOS follows the algorithm described by Hagelaar and Pitchford so you
should definitely cite their paper [HP2005].

There is not yet any publication associated directly with BOLOS, so if
you use it please link to its source code [https://github.com/aluque/bolos] at github.

	[HP2005]	(1, 2) *Solving the Boltzmann equation to obtain electron transport

coefficients and rate coefficients for fluid models*, G. J. M. Hagelaar
and L. C. Pitchford, Plasma Sources Sci. Technol. 14 (2005)
722–733.

 Copyright 2014, Alejandro Luque.
 Last updated on Jun 12, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	bolos 0.1 documentation

3. Bolos API reference

This page contains the documentation of the BOLOS API.

3.1. The solver Module

This module contains the main routines to load processes, specify the
physical conditions and solve the Boltzmann equation.

The data and calculations are encapsulated into the BoltzmannSolver
class, which you have to instantiate with a grid.Grid instance.
Use BoltzmannSolver.load_collisions() or
BoltzmannSolver.add_process() to add processes with
their cross-sections. Afterwards, set the density of each component
with BoltzmannSolver.set_density() or BoltzmannSolver.target.
The method BoltzmannSolver.maxwell() gives you a reasonable initial guess
for the electron energy distribution function (EEDF) that you can then improve
iteratively with BoltzmannSolver.converge(). Finally, methods such as
BoltzmannSolver.rate() or BoltzmannSolver.mobility() allow you
to obtain reaction rates and transport parameters for a given EEDF.

	
class bolos.solver.BoltzmannSolver(grid)[source]

	Bases: object

Class to solve the Boltzmann equation for electrons in a gas.

This class contains the required elements to specify the conditions
for the solver and obtain the equilibrium electron energy distribution
function.

	Parameters:	grid : grid.Grid

The grid in energies where the distribution funcition will be
evaluated.

Examples

>>> import numpy as np
>>> from bolos import solver, grid
>>> grid.LinearGrid(0, 60., 400)
>>> bsolver = solver.BoltzmannSolver(grid)
>>> # Parse the cross-section file in BOSIG+ format and load it into the
>>> # solver.
>>> with open(args.input) as fp:
>>> processes = parser.parse(fp)
>>> bsolver.load_collisions(processes)
>>>
>>> # Set the conditions. And initialize the solver
>>> bsolver.target['N2'].density = 0.8
>>> bsolver.target['O2'].density = 0.2
>>> bsolver.kT = 300 * co.k / co.eV
>>> bsolver.EN = 300.0 * solver.TOWNSEND
>>> bsolver.init()
>>>
>>> # Start with Maxwell EEDF as initial guess. Here we are starting with
>>> # with an electron temperature of 2 eV
>>> f0 = bsolver.maxwell(2.0)
>>>
>>> # Solve the Boltzmann equation with a tolerance rtol and maxn
>>> # iterations.
>>> f1 = bsolver.converge(f0, maxn=50, rtol=1e-5)

Attributes

	benergy
	(array of floats) Cell boundaries of the energy grid (set automatically at initialization). Equivalent to grid.b.

	benergy
	(array of floats) Cell lengths of the energy grid (set automatically at initialization). Equivalent to grid.d.

	cenergy
	(array of floats) Cell centers of the energy grid (set automatically at initialization). Equivalent to grid.c.

	n
	(int) Number of cells in the energy grid (set automatically at initialization). Equivalent to grid.n.

	kT
	(float) Gas temperature in eV. Must be set by the user.

	EN
	(float) Reduced electric field in Townsend (1 Td is 1e-21 V m^2). Must be set by the user.

	target
	(dict) A dictionary with targets in the set of processes. The user needs to set the density (molar fraction) of the desired targets using this dictionary. E.g. synthetic air is represented by

Methods

	add_process(**kwargs)
	Adds a new process to the solver.

	converge(f0[,maxn,rtol,delta0,m,full])
	Iterates and attempted EEDF until convergence is reached.

	diffusion(F0)
	Calculates the diffusion coefficient from a distribution function.

	init()
	Initializes the solver with given conditions and densities of the target species.

	iter_all()
	Iterates over all processes.

	iter_elastic()
	Iterates over all elastic processes.

	iter_growth()
	Iterates over all processes that affect the growth of electron density, i.e.

	iter_inelastic()
	Iterates over all inelastic processes.

	iter_momentum()
	

	iterate(f0[,delta])
	Iterates once the EEDF.

	load_collisions(dict_processes)
	Loads the set of collisions from the list of processes.

	maxwell(kT)
	Calculates a Maxwell-Boltzmann distribution function.

	mean_energy(F0)
	Calculates the mean energy from a distribution function.

	mobility(F0)
	Calculates the reduced mobility (mobility * N) from the EEDF.

	rate(F0,k[,weighted])
	Calculates the rate of a process from a (usually converged) EEDF.

	search(signature[,product,first])
	Search for a process or a number of processes within the solver.

	set_density(species,density)
	Sets the molar fraction of a species.

	
add_process(**kwargs)[source]

	Adds a new process to the solver.

Adds a new process to the solver. The process data is passed with
keyword arguments.

	Parameters:	type : string

one of “EFFECTIVE”, “MOMENTUM”, “EXCITATION”, “IONIZATION”
or “ATTACHMENT”.

target : string

the target species of the process (e.g. “O”, “O2”...).

ratio : float

the ratio of the electron mass to the mass of the target
(for elastic/momentum reactions only).

threshold : float

the energy threshold of the process in eV (only for
inelastic reactions).

data : array or array-like

cross-section of the process array with two columns: column
0 must contain energies in eV, column 1 contains the
cross-section in square meters for each of these energies.

	Returns:	process : process.Process

The process that has been added.

See also

	load_collisions

	Add a set of collisions.

Examples

>>> import numpy as np
>>> from bolos import solver, grid
>>> grid.LinearGrid(0, 60., 400)
>>> solver = BoltzmannSolver(grid)
>>> # This is an example cross-section that decays exponentially
>>> energy = np.linspace(0, 10)
>>> cross_section = 1e-20 * np.exp(-energy)
>>> solver.add_process(type="EXCITATION", target="Kriptonite",
>>> ratio=1e-5, threshold=10,
>>> data=np.c_[energy, cross_section])

	
converge(f0, maxn=100, rtol=1e-05, delta0=100000000000000.0, m=4.0, full=False, **kwargs)[source]

	Iterates and attempted EEDF until convergence is reached.

	Parameters:	f0 : array of floats

Initial EEDF.

maxn : int

Maximum number of iteration until the convergence is declared as
failed (default: 100).

rtol : float

Target tolerance for the convergence. The iteration is stopped
when the difference between EEDFs is smaller than rtol in L1
norm (default: 1e-5).

delta0 : float

Initial value of the iteration parameter. This parameter
is adapted in succesive iterations to improve convergence.
(default: 1e14)

m : float

Attempted reduction in the error for each iteration. The Richardson
extrapolation attempts to reduce the error by a factor m in each
iteration. Larger m means faster convergence but also possible
instabilities and non-decreasing errors. (default: 4)

full : boolean

If true returns convergence information besides the EEDF.

	Returns:	f1 : array of floats

Final EEDF

iters : int (returned only if full is True)

Number of iterations required to reach convergence.

err : float (returned only if full is True)

Final error estimation of the EEDF (must me smaller than rtol).

Notes

If convergence is not achieved after maxn iterations, an exception
of type ConvergenceError is raised.

	
diffusion(F0)[source]

	Calculates the diffusion coefficient from a
distribution function.

	Parameters:	F0 : array of floats

The EEDF used to compute the diffusion coefficient.

	Returns:	diffn : float

The reduced diffusion coefficient of electrons in SI units..

See also

	mobility

	Find the reduced mobility from the EEDF.

	
grid

	

	
init()[source]

	Initializes the solver with given conditions and densities of the
target species.

This method does all the work previous to the actual iterations.
It has to be called whenever the densities, the gas temperature
or the electric field are changed.

Notes

The most expensive calculations in this method are cached so they are
not repeated in each call. Therefore the execution time may vary
wildly in different calls. It takes very long whenever you change
the solver’s grid; therefore is is strongly recommended not to
change the grid if is not strictly neccesary.

	
iter_all()[source]

	Iterates over all processes.

	Returns:	An iterator over (target, process) tuples.

	
iter_elastic()[source]

	Iterates over all elastic processes.

	Returns:	An iterator over (target, process) tuples.

	
iter_growth()[source]

	Iterates over all processes that affect the growth
of electron density, i.e. ionization and attachment.

	Returns:	An iterator over (target, process) tuples.

	
iter_inelastic()[source]

	Iterates over all inelastic processes.

	Returns:	An iterator over (target, process) tuples.

	
iter_momentum()[source]

	

	
iterate(f0, delta=100000000000000.0)[source]

	Iterates once the EEDF.

	Parameters:	f0 : array of floats

The previous EEDF

delta : float

The convergence parameter. Generally a larger delta leads to faster
convergence but a too large value may lead to instabilities or
slower convergence.

	Returns:	f1 : array of floats

A new value of the distribution function.

Notes

This is a low-level routine not intended for normal uses. The
standard entry point for the iterative solution of the EEDF is
the BoltzmannSolver.converge() method.

	
load_collisions(dict_processes)[source]

	Loads the set of collisions from the list of processes.

Loads a list of dictionaries containing processes.

	Parameters:	dict_processes : List of dictionary or dictionary-like elements.

The processes to add to this solver class.
See :method:`solver.add_process` for the required fields
of each of the dictionaries.

	Returns:	processes : list

A list of all added processes, as process.Process instances.

See also

	add_process

	Add a single process, with its cross-sections, to this solver.

	
maxwell(kT)[source]

	Calculates a Maxwell-Boltzmann distribution function.

	Parameters:	kT : float

The electron temperature in eV.

	Returns:	f : array of floats

A normalized Boltzmann-Maxwell EEDF with the given temperature.

Notes

This is often useful to give a starting value for the EEDF.

	
mean_energy(F0)[source]

	Calculates the mean energy from a distribution function.

	Parameters:	F0 : array of floats

The EEDF used to compute the diffusion coefficient.

	Returns:	energy : float

The mean energy of electrons in the EEDF.

	
mobility(F0)[source]

	Calculates the reduced mobility (mobility * N) from the EEDF.

	Parameters:	F0 : array of floats

The EEDF used to compute the mobility.

	Returns:	mun : float

The reduced mobility (mu * n) of the electrons in SI
units (V / m / s).

See also

	diffusion

	Find the reduced diffusion rate from the EEDF.

Examples

>>> mun = bsolver.mobility(F0)

	
rate(F0, k, weighted=False)[source]

	Calculates the rate of a process from a (usually converged) EEDF.

	Parameters:	F0 : array of floats

Distribution function.

k : process.Process or string

The process whose rate we want to calculate. If k is a string,
it is passed to search() to obtain a process instance.

weighted : boolean, optional

If true, the rate is multiplied by the density of the target.

	Returns:	rate : float

The rate of the given process according to F0.

See also

	search

	Find a process that matches a given signature.

Examples

>>> k_ionization = bsolver.rate(F0, "N2 -> N2^+")

	
search(signature, product=None, first=True)[source]

	Search for a process or a number of processes within the solver.

	Parameters:	signature : string

Signature of the process to search for. It must be in the form
“TARGET -> RESULT [+ RESULT2]...”.

product : string

If present, the first parameter is interpreted as TARGET and the
second parameter is the PRODUCT.

first : boolean

If true returns only the first process matching the search; if
false returns a list of them, even if there is only one result.

	Returns:	processes : list or process.Process instance.

If first was true, returns the first process matching the
search. Otherwise returns a (possibly empty) list of matches.

Examples

>>> ionization = solver.search("N2 -> N2^+")[0]
>>> ionization = solver.search("N2", "N2^+", first=True)

	
set_density(species, density)[source]

	Sets the molar fraction of a species.

	Parameters:	species : str

The species whose density you want to set.

density : float

New value of the density.

Examples

These are two equivalent ways to set densities for synthetic air:

Using set_density():

bsolver.set_density('N2', 0.8)
bsolver.set_density('O2', 0.2)

Using bsolver.target:

bsolver.target['N2'].density = 0.8
bsolver.target['O2'].density = 0.2

	
exception bolos.solver.ConvergenceError[source]

	Bases: exceptions.Exception

3.2. The grid Module

Routines to handle different kinds of grids (linear, quadratic, logarithmic)

	
class bolos.grid.AutomaticGrid(grid, f0, delta=0.0001)[source]

	Bases: bolos.grid.Grid

A grid set automatically using a previous estimation of the EEDF
to fix a peak energy.

Methods

	cell(x)
	Returns the cell index containing the value x.

	interpolate(f,other)
	Interpolates into this grid an eedf defined in another grid.

	
class bolos.grid.GeometricGrid(x0, x1, n, r=1.1)[source]

	Bases: bolos.grid.Grid

A grid with geometrically progressing spacing. To be more precise,
here the length
of cell i+1 is r times the length of cell i.

Methods

	cell(x)
	Returns the cell index containing the value x.

	f(x)
	

	finv(w)
	

	interpolate(f,other)
	Interpolates into this grid an eedf defined in another grid.

	
f(x)[source]

	

	
finv(w)[source]

	

	
class bolos.grid.Grid(x0, x1, n)[source]

	Bases: object

Class to define energy grids.

This class encapsulates the information about an energy grid.

	Parameters:	x0 : float

Lowest boundary energy.

x1 : float

Highest energy boundary.

n : float

Number of cells

See also

	LinearGrid

	A grid with linear spacings (constant cell length).

	QuadraticGrid

	A grid with quadratic spacings (linearly increasing cell length).

	GeometricGrid

	A grid with geometrically increasing cell lengths.

	LogGrid

	A logarithmic grid.

Notes

This is a base class and you usually do not want to instantiate it
directly. You can define new grid classes by subclassing this class and
then defining an f method that maps energy to a new variable y
that is divided uniformly.

Methods

	cell(x)
	Returns the cell index containing the value x.

	interpolate(f,other)
	Interpolates into this grid an eedf defined in another grid.

	
cell(x)[source]

	Returns the cell index containing the value x.

	Parameters:	x : float

The value x which you want to localize.

	Returns:	index : int

The index to the cell containing x

	
interpolate(f, other)[source]

	Interpolates into this grid an eedf defined in another grid.

	Parameters:	f : array or array-like

The original EEDF

other : Grid

The old grid, where f is defined.

	Returns:	fnew : array or array-like

An EEDF defined in our grid.

	
class bolos.grid.LinearGrid(x0, x1, n)[source]

	Bases: bolos.grid.Grid

A grid with linear spacing.

Methods

	cell(x)
	Returns the cell index containing the value x.

	f(x)
	

	finv(w)
	

	interpolate(f,other)
	Interpolates into this grid an eedf defined in another grid.

	
f(x)[source]

	

	
finv(w)[source]

	

	
class bolos.grid.LogGrid(x0, x1, n, s=10.0)[source]

	Bases: bolos.grid.Grid

A pseudo-logarithmic grid. We add a certain s to the variable
to avoid log(0) = -inf. The grid is actually logarithmic only for
x >> s.

Methods

	cell(x)
	Returns the cell index containing the value x.

	f(x)
	

	finv(w)
	

	interpolate(f,other)
	Interpolates into this grid an eedf defined in another grid.

	
f(x)[source]

	

	
finv(w)[source]

	

	
class bolos.grid.QuadraticGrid(x0, x1, n)[source]

	Bases: bolos.grid.Grid

A grid with quadratic spacing.

Methods

	cell(x)
	Returns the cell index containing the value x.

	f(x)
	

	finv(w)
	

	interpolate(f,other)
	Interpolates into this grid an eedf defined in another grid.

	
f(x)[source]

	

	
finv(w)[source]

	

	
bolos.grid.mkgrid(kind, *args, **kwargs)[source]

	Builds and returns a grid of class kind. Possible values are
‘linear’, ‘lin’, ‘quadratic’, ‘quad’, ‘logarithmic’, ‘log’.

3.3. The parser Module

This module contains the code required to parse BOLSIG+-compatible files.
To make the code re-usabe in other projects it is independent from the rest of
the BOLOS code.

Most user would only use the method parse() in this module, which is
documented below.

	
bolos.parser.parse(fp)[source]

	Parses a BOLSIG+ cross-sections file.

	Parameters:	fp : file-like

A file object pointing to a Bolsig+-compatible cross-sections file.

	Returns:	processes : list of dictionaries

A list with all processes, in dictionary form, included in the file.

 Copyright 2014, Alejandro Luque.
 Last updated on Jun 12, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	bolos 0.1 documentation

 Python Module Index

 b

 			

 		
 b	

 	[image: -]
 	
 bolos	

 	
 	
 bolos.grid	

 	
 	
 bolos.parser	

 	
 	
 bolos.solver	

 Copyright 2014, Alejandro Luque.
 Last updated on Jun 12, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	bolos 0.1 documentation

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | P
 | Q
 | R
 | S

A

 	

 	add_process() (bolos.solver.BoltzmannSolver method)

 	

 	AutomaticGrid (class in bolos.grid)

B

 	

 	bolos.grid (module)

 	bolos.parser (module)

 	

 	bolos.solver (module)

 	BoltzmannSolver (class in bolos.solver)

C

 	

 	cell() (bolos.grid.Grid method)

 	converge() (bolos.solver.BoltzmannSolver method)

 	

 	ConvergenceError

D

 	

 	diffusion() (bolos.solver.BoltzmannSolver method)

F

 	

 	f() (bolos.grid.GeometricGrid method)

 	

 	(bolos.grid.LinearGrid method)

 	(bolos.grid.LogGrid method)

 	(bolos.grid.QuadraticGrid method)

 	

 	finv() (bolos.grid.GeometricGrid method)

 	

 	(bolos.grid.LinearGrid method)

 	(bolos.grid.LogGrid method)

 	(bolos.grid.QuadraticGrid method)

G

 	

 	GeometricGrid (class in bolos.grid)

 	grid (bolos.solver.BoltzmannSolver attribute)

 	

 	Grid (class in bolos.grid)

I

 	

 	init() (bolos.solver.BoltzmannSolver method)

 	interpolate() (bolos.grid.Grid method)

 	iter_all() (bolos.solver.BoltzmannSolver method)

 	iter_elastic() (bolos.solver.BoltzmannSolver method)

 	

 	iter_growth() (bolos.solver.BoltzmannSolver method)

 	iter_inelastic() (bolos.solver.BoltzmannSolver method)

 	iter_momentum() (bolos.solver.BoltzmannSolver method)

 	iterate() (bolos.solver.BoltzmannSolver method)

L

 	

 	LinearGrid (class in bolos.grid)

 	load_collisions() (bolos.solver.BoltzmannSolver method)

 	

 	LogGrid (class in bolos.grid)

M

 	

 	maxwell() (bolos.solver.BoltzmannSolver method)

 	mean_energy() (bolos.solver.BoltzmannSolver method)

 	

 	mkgrid() (in module bolos.grid)

 	mobility() (bolos.solver.BoltzmannSolver method)

P

 	

 	parse() (in module bolos.parser)

Q

 	

 	QuadraticGrid (class in bolos.grid)

R

 	

 	rate() (bolos.solver.BoltzmannSolver method)

S

 	

 	search() (bolos.solver.BoltzmannSolver method)

 	

 	set_density() (bolos.solver.BoltzmannSolver method)

 Copyright 2014, Alejandro Luque.
 Last updated on Jun 12, 2014.
 Created using Sphinx 1.2.2.

 _modules/bolos/solver.html

 Navigation

 		
 index

 		
 modules |

 		bolos 0.1 documentation »

 		Module code »

 Source code for bolos.solver

""" This module contains the main routines to load processes, specify the
physical conditions and solve the Boltzmann equation.

The data and calculations are encapsulated into the :class:`BoltzmannSolver`
class, which you have to instantiate with a :class:`grid.Grid` instance.
Use :func:`BoltzmannSolver.load_collisions` or
:func:`BoltzmannSolver.add_process` to add processes with
their cross-sections. Afterwards, set the density of each component
with :func:`BoltzmannSolver.set_density` or :attr:`BoltzmannSolver.target`.
The method :func:`BoltzmannSolver.maxwell` gives you a reasonable initial guess
for the electron energy distribution function (EEDF) that you can then improve
iteratively with :func:`BoltzmannSolver.converge`. Finally, methods such as
:func:`BoltzmannSolver.rate` or :func:`BoltzmannSolver.mobility` allow you
to obtain reaction rates and transport parameters for a given EEDF.

"""

__docformat__ = "restructuredtext en"

import sys
import logging

from math import sqrt
import numpy as np

Units in this module will be SI units, except energies, which are expressed
in eV.
The scipy.constants contains the recommended CODATA for all physical
constants in SI units.
import scipy.constants as co
from scipy import integrate
from scipy import sparse
from scipy.sparse.linalg import spsolve

from process import Process
from target import Target

GAMMA = sqrt(2 * co.elementary_charge / co.electron_mass)
TOWNSEND = 1e-21
KB = co.k
ELECTRONVOLT = co.eV

[docs]class ConvergenceError(Exception):
 pass

[docs]class BoltzmannSolver(object):
 """Class to solve the Boltzmann equation for electrons in a gas.

 This class contains the required elements to specify the conditions
 for the solver and obtain the equilibrium electron energy distribution
 function.

 Parameters

 grid : :class:`grid.Grid`
 The grid in energies where the distribution funcition will be
 evaluated.

 Attributes

 benergy : array of floats
 Cell boundaries of the energy grid (set automatically at \
 initialization). Equivalent to `grid.b`.
 benergy : array of floats
 Cell lengths of the energy grid (set automatically at initialization). \
 Equivalent to `grid.d`.
 cenergy : array of floats
 Cell centers of the energy grid (set automatically at initialization). \
 Equivalent to `grid.c`.
 n : int
 Number of cells in the energy grid (set automatically at \
 initialization). Equivalent to `grid.n`.
 kT : float
 Gas temperature in eV. Must be set by the user.
 EN : float
 Reduced electric field in Townsend (1 Td is 1e-21 V m^2). \
 Must be set by the user.
 target : dict
 A dictionary with targets in the set of processes.\
 The user needs to set the density (molar fraction) of the desired \
 targets using this dictionary. E.g. synthetic air is represented by

 Examples

 >>> import numpy as np
 >>> from bolos import solver, grid
 >>> grid.LinearGrid(0, 60., 400)
 >>> bsolver = solver.BoltzmannSolver(grid)
 >>> # Parse the cross-section file in BOSIG+ format and load it into the
 >>> # solver.
 >>> with open(args.input) as fp:
 >>> processes = parser.parse(fp)
 >>> bsolver.load_collisions(processes)
 >>>
 >>> # Set the conditions. And initialize the solver
 >>> bsolver.target['N2'].density = 0.8
 >>> bsolver.target['O2'].density = 0.2
 >>> bsolver.kT = 300 * co.k / co.eV
 >>> bsolver.EN = 300.0 * solver.TOWNSEND
 >>> bsolver.init()
 >>>
 >>> # Start with Maxwell EEDF as initial guess. Here we are starting with
 >>> # with an electron temperature of 2 eV
 >>> f0 = bsolver.maxwell(2.0)
 >>>
 >>> # Solve the Boltzmann equation with a tolerance rtol and maxn
 >>> # iterations.
 >>> f1 = bsolver.converge(f0, maxn=50, rtol=1e-5)

 """

 def __init__(self, grid):
 """ Initialize a solver instance.

 Use this method to initialize a solver instance with a given grid.

 Parameters

 grid : :class:`grid.Grid`
 The grid in energies where the distribution funcition will be
 evaluated.

 Returns

 """

 self.density = dict()

 self.EN = None

 self.grid = grid

 # A dictionary with target_name -> target
 self.target = {}

 def _get_grid(self):
 return self._grid

 def _set_grid(self, grid):
 self._grid = grid

 # These are cell boundary values at i - 1/2
 self.benergy = self.grid.b

 # these are cell centers
 self.cenergy = self.grid.c

 # And these are the deltas
 self.denergy = self.grid.d

 # This is useful when integrating the growth term.
 self.denergy32 = self.benergy[1:]**1.5 - self.benergy[:-1]**1.5

 self.n = grid.n

 grid = property(_get_grid, _set_grid)

[docs] def set_density(self, species, density):
 """ Sets the molar fraction of a species.

 Parameters

 species : str
 The species whose density you want to set.
 density : float
 New value of the density.

 Returns

 Examples

 These are two equivalent ways to set densities for synthetic air:

 Using :func:`set_density`::

 bsolver.set_density('N2', 0.8)
 bsolver.set_density('O2', 0.2)

 Using `bsolver.target`::

 bsolver.target['N2'].density = 0.8
 bsolver.target['O2'].density = 0.2
 """

 self.target[species].density = density

[docs] def load_collisions(self, dict_processes):
 """ Loads the set of collisions from the list of processes.

 Loads a list of dictionaries containing processes.

 Parameters

 dict_processes : List of dictionary or dictionary-like elements.
 The processes to add to this solver class.
 See :method:`solver.add_process` for the required fields
 of each of the dictionaries.

 Returns

 processes : list
 A list of all added processes, as :class:`process.Process` instances.

 See Also

 add_process : Add a single process, with its cross-sections, to this
 solver.

 """
 plist = [self.add_process(**p) for p in dict_processes]

 # We make sure that all targets have their elastic cross-sections
 # in the form of ELASTIC cross sections (not EFFECTIVE / MOMENTUM)
 for key, item in self.target.iteritems():
 item.ensure_elastic()

 return plist

[docs] def add_process(self, **kwargs):
 """ Adds a new process to the solver.

 Adds a new process to the solver. The process data is passed with
 keyword arguments.

 Parameters

 type : string
 one of "EFFECTIVE", "MOMENTUM", "EXCITATION", "IONIZATION"
 or "ATTACHMENT".
 target : string
 the target species of the process (e.g. "O", "O2"...).
 ratio : float
 the ratio of the electron mass to the mass of the target
 (for elastic/momentum reactions only).
 threshold : float
 the energy threshold of the process in eV (only for
 inelastic reactions).
 data : array or array-like
 cross-section of the process array with two columns: column
 0 must contain energies in eV, column 1 contains the
 cross-section in square meters for each of these energies.

 Returns

 process : :class:`process.Process`
 The process that has been added.

 Examples

 >>> import numpy as np
 >>> from bolos import solver, grid
 >>> grid.LinearGrid(0, 60., 400)
 >>> solver = BoltzmannSolver(grid)
 >>> # This is an example cross-section that decays exponentially
 >>> energy = np.linspace(0, 10)
 >>> cross_section = 1e-20 * np.exp(-energy)
 >>> solver.add_process(type="EXCITATION", target="Kriptonite",
 >>> ratio=1e-5, threshold=10,
 >>> data=np.c_[energy, cross_section])

 See Also

 load_collisions : Add a set of collisions.

 """
 proc = Process(**kwargs)
 try:
 target = self.target[proc.target_name]
 except KeyError:
 target = Target(proc.target_name)
 self.target[proc.target_name] = target

 target.add_process(proc)

 return proc

[docs] def search(self, signature, product=None, first=True):
 """ Search for a process or a number of processes within the solver.

 Parameters

 signature : string
 Signature of the process to search for. It must be in the form
 "TARGET -> RESULT [+ RESULT2]...".
 product : string
 If present, the first parameter is interpreted as TARGET and the
 second parameter is the PRODUCT.
 first : boolean
 If true returns only the first process matching the search; if
 false returns a list of them, even if there is only one result.

 Returns

 processes : list or :class:`process.Process` instance.
 If ``first`` was true, returns the first process matching the
 search. Otherwise returns a (possibly empty) list of matches.

 Examples

 >>> ionization = solver.search("N2 -> N2^+")[0]
 >>> ionization = solver.search("N2", "N2^+", first=True)

 """
 if product is not None:
 l = self.target[signature].by_product[product]
 if not l:
 raise KeyError("Process %s not found" % signature)

 return l[0] if first else l

 t, p = [x.strip() for x in signature.split('->')]
 return self.search(t, p, first=first)

[docs] def iter_elastic(self):
 """ Iterates over all elastic processes.

 Parameters

 Returns

 An iterator over (target, process) tuples.
 """

 for target in self.target.values():
 if target.density > 0:
 for process in target.elastic:
 yield target, process

[docs] def iter_inelastic(self):
 """ Iterates over all inelastic processes.

 Parameters

 Returns

 An iterator over (target, process) tuples. """

 for target in self.target.values():
 if target.density > 0:
 for process in target.inelastic:
 yield target, process

[docs] def iter_growth(self):
 """ Iterates over all processes that affect the growth
 of electron density, i.e. ionization and attachment.

 Parameters

 Returns

 An iterator over (target, process) tuples.

 """
 for target in self.target.values():
 if target.density > 0:
 for process in target.ionization:
 yield target, process

 for process in target.attachment:
 yield target, process

[docs] def iter_all(self):
 """ Iterates over all processes.

 Parameters

 Returns

 An iterator over (target, process) tuples.

 """
 for t, k in self.iter_elastic():
 yield t, k

 for t, k in self.iter_inelastic():
 yield t, k

[docs] def iter_momentum(self):
 return self.iter_all()

[docs] def init(self):
 """ Initializes the solver with given conditions and densities of the
 target species.

 This method does all the work previous to the actual iterations.
 It has to be called whenever the densities, the gas temperature
 or the electric field are changed.

 Parameters

 Returns

 Notes

 The most expensive calculations in this method are cached so they are
 not repeated in each call. Therefore the execution time may vary
 wildly in different calls. It takes very long whenever you change
 the solver's grid; therefore is is strongly recommended not to
 change the grid if is not strictly neccesary.

 """

 self.sigma_eps = np.zeros_like(self.benergy)
 self.sigma_m = np.zeros_like(self.benergy)
 for target, process in self.iter_elastic():
 s = target.density * process.interp(self.benergy)
 self.sigma_eps += 2 * target.mass_ratio * s
 self.sigma_m += s
 process.set_grid_cache(self.grid)

 for target, process in self.iter_inelastic():
 self.sigma_m += target.density * process.interp(self.benergy)
 process.set_grid_cache(self.grid)

 self.W = -GAMMA * self.benergy**2 * self.sigma_eps

 # This is the coeff of sigma_tilde
 self.DA = (GAMMA / 3. * self.EN**2 * self.benergy)

 # This is the independent term
 self.DB = (GAMMA * self.kT * self.benergy**2 * self.sigma_eps)

 logging.info("Solver succesfully initialized/updated")

 ##
 # Here are the functions that depend on F0 and are therefore
 # called in each iteration. These are all pure-functions without
 # side-effects and without changing the state of self

[docs] def maxwell(self, kT):
 """ Calculates a Maxwell-Boltzmann distribution function.

 Parameters

 kT : float
 The electron temperature in eV.

 Returns

 f : array of floats
 A normalized Boltzmann-Maxwell EEDF with the given temperature.

 Notes

 This is often useful to give a starting value for the EEDF.
 """

 return (2 * np.sqrt(1 / np.pi)
 * kT**(-3./2.) * np.exp(-self.cenergy / kT))

[docs] def iterate(self, f0, delta=1e14):
 """ Iterates once the EEDF.

 Parameters

 f0 : array of floats
 The previous EEDF
 delta : float
 The convergence parameter. Generally a larger delta leads to faster
 convergence but a too large value may lead to instabilities or
 slower convergence.

 Returns

 f1 : array of floats
 A new value of the distribution function.

 Notes

 This is a low-level routine not intended for normal uses. The
 standard entry point for the iterative solution of the EEDF is
 the :func:`BoltzmannSolver.converge` method.
 """

 A, Q = self._linsystem(f0)

 f1 = spsolve(sparse.eye(self.n)
 + delta * A - delta * Q, f0)

 return self._normalized(f1)

[docs] def converge(self, f0, maxn=100, rtol=1e-5, delta0=1e14, m=4.0,
 full=False, **kwargs):
 """ Iterates and attempted EEDF until convergence is reached.

 Parameters

 f0 : array of floats
 Initial EEDF.
 maxn : int
 Maximum number of iteration until the convergence is declared as
 failed (default: 100).
 rtol : float
 Target tolerance for the convergence. The iteration is stopped
 when the difference between EEDFs is smaller than rtol in L1
 norm (default: 1e-5).
 delta0 : float
 Initial value of the iteration parameter. This parameter
 is adapted in succesive iterations to improve convergence.
 (default: 1e14)
 m : float
 Attempted reduction in the error for each iteration. The Richardson
 extrapolation attempts to reduce the error by a factor m in each
 iteration. Larger m means faster convergence but also possible
 instabilities and non-decreasing errors. (default: 4)
 full : boolean
 If true returns convergence information besides the EEDF.

 Returns

 f1 : array of floats
 Final EEDF
 iters : int (returned only if ``full`` is True)
 Number of iterations required to reach convergence.
 err : float (returned only if ``full`` is True)
 Final error estimation of the EEDF (must me smaller than ``rtol``).

 Notes

 If convergence is not achieved after ``maxn`` iterations, an exception
 of type ``ConvergenceError`` is raised.
 """

 err0 = err1 = 0
 delta = delta0

 for i in xrange(maxn):
 # If we have already two error estimations we use Richardson
 # extrapolation to obtain a new delta and speed up convergence.
 if 0 < err1 < err0:
 # Linear extrapolation
 # delta = delta * err1 / (err0 - err1)

 # Log extrapolation attempting to reduce the error a factor m
 delta = delta * np.log(m) / (np.log(err0) - np.log(err1))

 f1 = self.iterate(f0, delta=delta, **kwargs)
 err0 = err1
 err1 = self._norm(abs(f0 - f1))

 logging.debug("After iteration %3d, err = %g (target: %g)"
 % (i + 1, err1, rtol))
 if err1 < rtol:
 logging.info("Convergence achieved after %d iterations. "
 "err = %g" % (i + 1, err1))
 if full:
 return f1, i + 1, err1

 return f1
 f0 = f1

 logging.error("Convergence failed")

 raise ConvergenceError()

 def _linsystem(self, F):
 Q = self._PQ(F)

 # Useful for debugging but wasteful in normal times.
 # if np.any(np.isnan(Q.todense())):
 # raise ValueError("NaN found in Q")

 nu = np.sum(Q.dot(F))

 sigma_tilde = self.sigma_m + nu / np.sqrt(self.benergy) / GAMMA

 # The R (G) term, which we add to A.
 G = 2 * self.denergy32 * nu / 3

 A = self._scharf_gummel(sigma_tilde, G)

 # if np.any(np.isnan(A.todense())):
 # raise ValueError("NaN found in A")

 return A, Q

 def _norm(self, f):
 return integrate.simps(f * np.sqrt(self.cenergy), x=self.cenergy)

 # return np.sum(f * np.sqrt(self.cenergy) * self.denergy)

 def _normalized(self, f):
 N = self._norm(f)
 return f / N

 def _scharf_gummel(self, sigma_tilde, G=0):
 D = self.DA / (sigma_tilde) + self.DB

 # Due to the zero flux b.c. the values of z[0] and z[-1] are never used.
 # To make sure, we set is a nan so it will taint everything if ever
 # used.
 # TODO: Perhaps it would be easier simply to set the appropriate
 # values here to satisfy the b.c.
 z = self.W * np.r_[np.nan, np.diff(self.cenergy), np.nan] / D

 a0 = self.W / (1 - np.exp(-z))
 a1 = self.W / (1 - np.exp(z))

 diags = np.zeros((3, self.n))

 # No flux at the energy = 0 boundary
 diags[0, 0] = a0[1]

 diags[0, 1:] = a0[2:] - a1[1:-1]
 diags[1, :] = a1[:-1]
 diags[2, :] = -a0[1:]

 # F[n+1] = 2 * F[n] + F[n-1] b.c.
 # diags[2, -2] -= a1[-1]
 # diags[0, -1] += 2 * a1[-1]

 # F[n+1] = F[n] b.c.
 # diags[0, -1] += a1[-1]

 # zero flux b.c.
 diags[2, -2] = -a0[-2]
 diags[0, -1] = -a1[-2]

 diags[0, :] += G

 A = sparse.dia_matrix((diags, [0, 1, -1]), shape=(self.n, self.n))

 return A

 def _g(self, F0):
 Fp = np.r_[F0[0], F0, F0[-1]]
 cenergyp = np.r_[self.cenergy[0], self.cenergy, self.cenergy[-1]]
 g = np.log(Fp[2:] / Fp[:-2]) / (cenergyp[2:] - cenergyp[:-2])

 return g

 def _PQ(self, F0, reactions=None):
 PQ = sparse.csr_matrix((self.n, self.n))

 g = self._g(F0)
 if reactions is None:
 reactions = list(self.iter_inelastic())

 data = []
 rows = []
 cols = []

 for t, k in reactions:
 r = t.density * GAMMA * k.scatterings(g, self.cenergy)
 in_factor = k.in_factor

 data.extend([in_factor * r, -r])
 rows.extend([k.i, k.j])
 cols.extend([k.j, k.j])

 data, rows, cols = (np.hstack(x) for x in (data, rows, cols))
 PQ = sparse.coo_matrix((data, (rows, cols)),
 shape=(self.n, self.n))
 return PQ

 ##
 # Now some functions to calculate rates transport parameters from the
 # converged F0
[docs] def rate(self, F0, k, weighted=False):
 """ Calculates the rate of a process from a (usually converged) EEDF.

 Parameters

 F0 : array of floats
 Distribution function.
 k : :class:`process.Process` or string
 The process whose rate we want to calculate. If `k` is a string,
 it is passed to :func:`search` to obtain a process instance.
 weighted : boolean, optional
 If true, the rate is multiplied by the density of the target.

 Returns

 rate : float
 The rate of the given process according to `F0`.

 Examples

 >>> k_ionization = bsolver.rate(F0, "N2 -> N2^+")

 See Also

 search : Find a process that matches a given signature.

 """
 g = self._g(F0)

 if isinstance(k, (str, unicode)):
 k = self.search(k)

 k.set_grid_cache(self.grid)

 r = k.scatterings(g, self.cenergy)

 P = sparse.coo_matrix((GAMMA * r, (k.j, np.zeros(r.shape))),
 shape=(self.n, 1)).todense()

 P = np.squeeze(np.array(P))

 rate = F0.dot(P)
 if weighted:
 rate *= k.target.density

 return rate

[docs] def mobility(self, F0):
 """ Calculates the reduced mobility (mobility * N) from the EEDF.

 Parameters

 F0 : array of floats
 The EEDF used to compute the mobility.

 Returns

 mun : float
 The reduced mobility (mu * n) of the electrons in SI
 units (V / m / s).

 Examples

 >>> mun = bsolver.mobility(F0)

 See Also

 diffusion : Find the reduced diffusion rate from the EEDF.
 """

 DF0 = np.r_[0.0, np.diff(F0) / np.diff(self.cenergy), 0.0]
 Q = self._PQ(F0, reactions=self.iter_growth())

 nu = np.sum(Q.dot(F0)) / GAMMA
 sigma_tilde = self.sigma_m + nu / np.sqrt(self.benergy)

 y = DF0 * self.benergy / sigma_tilde
 y[0] = 0

 return -(GAMMA / 3) * integrate.simps(y, x=self.benergy)

[docs] def diffusion(self, F0):
 """ Calculates the diffusion coefficient from a
 distribution function.

 Parameters

 F0 : array of floats
 The EEDF used to compute the diffusion coefficient.

 Returns

 diffn : float
 The reduced diffusion coefficient of electrons in SI units..

 See Also

 mobility : Find the reduced mobility from the EEDF.

 """

 Q = self._PQ(F0, reactions=self.iter_growth())

 nu = np.sum(Q.dot(F0)) / GAMMA

 sigma_m = np.zeros_like(self.cenergy)
 for target, process in self.iter_momentum():
 s = target.density * process.interp(self.cenergy)
 sigma_m += s

 sigma_tilde = sigma_m + nu / np.sqrt(self.cenergy)

 y = F0 * self.cenergy / sigma_tilde

 return (GAMMA / 3) * integrate.simps(y, x=self.cenergy)

[docs] def mean_energy(self, F0):
 """ Calculates the mean energy from a distribution function.

 Parameters

 F0 : array of floats
 The EEDF used to compute the diffusion coefficient.

 Returns

 energy : float
 The mean energy of electrons in the EEDF.

 """

 de52 = np.diff(self.benergy**2.5)
 return np.sum(0.4 * F0 * de52)

 © Copyright 2014, Alejandro Luque.
 Last updated on Jun 12, 2014.
 Created using Sphinx 1.2.2.

_modules/bolos/parser.html

 Navigation

 		
 index

 		
 modules |

 		bolos 0.1 documentation »

 		Module code »

 Source code for bolos.parser

""" This module contains the code required to parse BOLSIG+-compatible files.
To make the code re-usabe in other projects it is independent from the rest of
the BOLOS code.

Most user would only use the method :func:`parse` in this module, which is
documented below.

"""

import sys
import re
import numpy as np
import logging

[docs]def parse(fp):
 """ Parses a BOLSIG+ cross-sections file.

 Parameters

 fp : file-like
 A file object pointing to a Bolsig+-compatible cross-sections file.

 Returns

 processes : list of dictionaries
 A list with all processes, in dictionary form, included in the file.

 Note

 This function does not return :class:`process.Process` instances so that
 the parser is independent of the rest of the code and can be re-used in
 other projects. If you want to convert a process in dictionary form `d` to
 a :class:`process.Process` instance, use

 >>> process = process.Process(**d)

 """
 processes = []
 for line in fp:
 try:
 key = line.strip()
 fread = KEYWORDS[key]

 # If the key is not found, we do not reach this line.
 logging.debug("New process of type '%s'" % key)

 d = fread(fp)
 d['kind'] = key
 processes.append(d)

 except KeyError:
 pass

 logging.info("Parsing complete. %d processes read." % len(processes))

 return processes

BOLSIG+'s user guide saye that the separators must consist of at least five dashes

RE_SEP = re.compile("-----+")
def _read_until_sep(fp):
 """ Reads lines from fp until a we find a separator line. """
 lines = []
 for line in fp:
 if RE_SEP.match(line.strip()):
 break
 lines.append(line.strip())

 return lines

def _read_block(fp, has_arg=True):
 """ Reads data of a process, contained in a block.
 has_arg indicates wether we have to read an argument line"""
 target = fp.next().strip()
 if has_arg:
 arg = fp.next().strip()
 else:
 arg = None

 comment = "\n".join(_read_until_sep(fp))

 logging.debug("Read process '%s'" % target)
 data = np.loadtxt(_read_until_sep(fp)).tolist()

 return target, arg, comment, data

#
Specialized funcion for each keyword. They all return dictionaries with the
relevant attibutes.

def _read_momentum(fp):
 """ Reads a MOMENTUM or EFFECTIVE block. """
 target, arg, comment, data = _read_block(fp, has_arg=True)
 mass_ratio = float(arg.split()[0])
 d = dict(target=target,
 mass_ratio=mass_ratio,
 comment=comment,
 data=data)

 return d

RE_ARROW = re.compile('<?->')
def _read_excitation(fp):
 """ Reads an EXCITATION or IONIZATION block. """
 target, arg, comment, data = _read_block(fp, has_arg=True)
 lhs, rhs = [s.strip() for s in RE_ARROW.split(target)]

 d = dict(target=lhs,
 product=rhs,
 comment=comment,
 data=data)

 if '<->' in target.split():
 threshold, weight_ratio = float(arg.split()[0]), float(arg.split()[1])
 d['weight_ratio'] = weight_ratio
 else:
 threshold = float(arg.split()[0])

 d['threshold'] = threshold
 return d

def _read_attachment(fp):
 """ Reads an ATTACHMENT block. """
 target, arg, comment, data = _read_block(fp, has_arg=False)

 d = dict(comment=comment,
 data=data,
 threshold=0.0)
 lr = [s.strip() for s in RE_ARROW.split(target)]

 if len(lr) == 2:
 d['target'] = lr[0]
 d['product'] = lr[1]
 else:
 d['target'] = target

 return d

KEYWORDS = {"MOMENTUM": _read_momentum,
 "ELASTIC": _read_momentum,
 "EFFECTIVE": _read_momentum,
 "EXCITATION": _read_excitation,
 "IONIZATION": _read_excitation,
 "ATTACHMENT": _read_attachment}

 © Copyright 2014, Alejandro Luque.
 Last updated on Jun 12, 2014.
 Created using Sphinx 1.2.2.

_static/comment.png

_static/minus.png

_static/comment-close.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		bolos 0.1 documentation »

 All modules for which code is available

		bolos.grid

		bolos.parser

		bolos.solver

 © Copyright 2014, Alejandro Luque.
 Last updated on Jun 12, 2014.
 Created using Sphinx 1.2.2.

recipes.html

 Navigation

 		
 index

 		
 modules |

 		bolos 0.1 documentation »

Recipes

 © Copyright 2014, Alejandro Luque.
 Last updated on Jun 12, 2014.
 Created using Sphinx 1.2.2.

_modules/bolos/grid.html

 Navigation

 		
 index

 		
 modules |

 		bolos 0.1 documentation »

 		Module code »

 Source code for bolos.grid

""" Routines to handle different kinds of grids (linear, quadratic, logarithmic)
"""
import numpy as np
from scipy.interpolate import interp1d

[docs]class Grid(object):
 """ Class to define energy grids.

 This class encapsulates the information about an energy grid.

 Parameters

 x0 : float
 Lowest boundary energy.
 x1 : float
 Highest energy boundary.
 n : float
 Number of cells

 Notes

 This is a base class and you usually do not want to instantiate it
 directly. You can define new grid classes by subclassing this class and
 then defining an `f` method that maps energy to a new variable `y`
 that is divided uniformly.

 See Also

 LinearGrid : A grid with linear spacings (constant cell length).
 QuadraticGrid : A grid with quadratic spacings (linearly increasing
 cell length).
 GeometricGrid : A grid with geometrically increasing cell lengths.
 LogGrid : A logarithmic grid.

 """
 def __init__(self, x0, x1, n):
 self.x0 = x0
 self.x1 = x1
 self.delta = x1 - x0

 self.fx0 = self.f(x0)
 self.fx1 = self.f(x1)

 self.n = n

 # Boundaries at i - 1/2
 fx = np.linspace(self.fx0, self.fx1, self.n + 1)
 self.b = self.finv(fx)

 # centers
 self.c = 0.5 * (self.b[1:] + self.b[:-1])

 # And these are the deltas
 self.d = np.diff(self.b)

 # This is the spacing of the mapped x
 self.df = fx[1] - fx[0]

 # This is useful in some routines that integrate eps**1/2 * f
 self.d32 = self.b[1:]**1.5 - self.b[:-1]**1.5

 self._interp = None

[docs] def interpolate(self, f, other):
 """ Interpolates into this grid an eedf defined in another grid.

 Parameters

 f : array or array-like
 The original EEDF
 other : :class:`Grid`
 The old grid, where `f` is defined.

 Returns

 fnew : array or array-like
 An EEDF defined in our grid.

 """
 if self._interp is None:
 # Sould we extrapolate linearly instead od by closest value?
 self._interp = interp1d(np.r_[other.x0, other.c, other.x1],
 np.r_[f[0], f, f[-1]],
 bounds_error=False, fill_value=0)

 return self._interp(self.c)

[docs] def cell(self, x):
 """ Returns the cell index containing the value x.

 Parameters

 x : float
 The value x which you want to localize.

 Returns

 index : int
 The index to the cell containing x

 """
 return int((self.f(x) - self.fx0) / self.df)

[docs]class LinearGrid(Grid):
 """ A grid with linear spacing. """
[docs] def f(self, x):
 return x

[docs] def finv(self, w):
 return w

[docs]class QuadraticGrid(Grid):
 """ A grid with quadratic spacing. """
[docs] def f(self, x):
 return np.sqrt(x - self.x0)

[docs] def finv(self, w):
 return w**2 + self.x0

[docs]class GeometricGrid(Grid):
 """ A grid with geometrically progressing spacing. To be more precise,
 here the length
 of cell i+1 is r times the length of cell i.
 """
 def __init__(self, x0, x1, n, r=1.1):
 self.r = r
 self.logr = np.log(r)
 self.rn_minus_1 = np.exp(n * self.logr) - 1

 super(GeometricGrid, self).__init__(x0, x1, n)

[docs] def f(self, x):
 return (np.log(1 + (x - self.x0) * self.rn_minus_1 / self.delta)
 / self.logr)

[docs] def finv(self, w):
 return (self.x0 + self.delta * (np.exp(w * self.logr) - 1)
 / self.rn_minus_1)

[docs]class LogGrid(Grid):
 """ A pseudo-logarithmic grid. We add a certain s to the variable
 to avoid log(0) = -inf. The grid is actually logarithmic only for
 x >> s.
 """
 def __init__(self, x0, x1, n, s=10.):
 self.s = s
 super(LogGrid, self).__init__(x0, x1, n)

[docs] def f(self, x):
 return np.log(self.s + (x - self.x0))

[docs] def finv(self, w):
 return np.exp(w) - self.s + self.x0

[docs]class AutomaticGrid(Grid):
 """ A grid set automatically using a previous estimation of the EEDF
 to fix a peak energy. """
 def __init__(self, grid, f0, delta=1e-4):
 # We will create a new grid where the number of particles is roughly
 # the same inside each cell and the number of cells is the same as in
 # grid.

 # TODO: This is also calculated in the solver.BoltzmannSolver class
 cum = np.r_[0.0, np.cumsum(grid.d32 * f0)]

 # If we had integrated f0 exactly, cum[-1] would be 1. However it may
 # be slightly differentso we will renormalize here to prevent an error
 # when we interpolate for a number very close to 1.0.
 cum[:] = cum / cum[-1]

 interp = interp1d(cum, grid.b)
 nnew = np.linspace(0.0, 1.0, grid.n + 1)

 self.n, self.x0, self.x1 = grid.n, grid.x0, grid.x1

 self.b = interp(nnew)

 self.c = 0.5 * (self.b[1:] + self.b[:-1])
 self.d = np.diff(self.b)

 self._interp = None

[docs]def mkgrid(kind, *args, **kwargs):
 """ Builds and returns a grid of class kind. Possible values are
 'linear', 'lin', 'quadratic', 'quad', 'logarithmic', 'log'.
 """
 GRID_CLASSES = {'linear': LinearGrid,
 'lin': LinearGrid,
 'quadratic': QuadraticGrid,
 'quad': QuadraticGrid,
 'geometric': GeometricGrid,
 'geo': GeometricGrid,
 'logarithmic': LogGrid,
 'log': LogGrid}

 klass = GRID_CLASSES[kind]

 return klass(*args, **kwargs)

 © Copyright 2014, Alejandro Luque.
 Last updated on Jun 12, 2014.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		bolos 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Alejandro Luque.
 Last updated on Jun 12, 2014.
 Created using Sphinx 1.2.2.

_static/file.png

_static/boloslogotrans.png

_static/down.png

_static/ajax-loader.gif

