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BOLOS is a BOLtzmann equation solver Open Source library.

This package provides a pure Python library for the solution of the Boltzmann equation for electrons in a non-thermal
plasma. It builds upon previous work, mostly by G. J. M. Hagelaar and L. C. Pitchford [HP2005], who developed
BOLSIG+. BOLOS is a multiplatform, open source implementation of a similar algorithm compatible with the BOL-
SIG+ cross-section input format.

The code was developed by Alejandro Luque at the Instituto de Astrofísica de Andalucía (IAA), CSIC and is released
under the LGPLv2 License. Packages can be downloaded from the project homepage on PyPI. The source code can
be obtained from GitHub, which also hosts the bug tracker. The documentation can be read on ReadTheDocs.
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CHAPTER 1

Tutorial

This tutorial will guide you through all the step that you must follow in order to use BOLOS in your code to solve the
Boltzmann equation.

1.1 Installation

BOLOS is a pure Python package and it sticks to the Python conventions for the distribution of libraries. Its only
dependencies are NumPy and SciPy. See here for installation instructions of these packages for your operating system.

There are a few ways to have BOLOS installed in your system:

1. Download the full source repo from github:

git clone https://github.com/aluque/bolos.git

This will create a bolos folder with the full code, examples and documentation source. You can then install
bolos by e.g. typing:

python setup.py install

Alternatively since BOLOS is pure python package, you can put the bolos/ sub-folder to whatever place where
it can be found by the Python interpreter (including your PYTHONPATH).

2. You can use the Python Package Index (PyPI). From there you can download a tarball or you can instruct pip to
download the package for you and install it in your system:

pip install bolos

1.2 First steps

To start using bolos from your Python, import the required modules:

from bolos import parser, grid, solver

Usually you only need to import these three packages:

• parser contains methods to parse a file with cross-sections in BOLSIG+ format,

• grid allows you to define different types of grids in energy space.

• solver contains the solver.BoltzmannSolver, which the class that you will use to solve the Boltzmann
equation.

3
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Now you can define an energy grid where you want to evaluate the electron energies. The :module:‘grid‘ contains a
few classes to do this. The simplest one defines a linear grid. Let’s create a grid extending from 0 to 20 eV with 200
cells:

gr = grid.LinearGrid(0, 60., 200)

We want to use this grid in a solver.BoltzmannSolver instance that we initialize as:

boltzmann = solver.BoltzmannSolver(gr)

1.3 Loading cross-sections

The next step is to load a set of cross-sections for the processes that will affect the electrons. BOLOS does not come
with any set of cross-sections. You can obtain them from the great database LxCat. BOLOS can read without changes
files downloaded from LxCat.

Now let’s tell boltzmann to load a set of cross-sections from a file named lxcat.dat:

with open(’lxcat.dat’) as fp:
processes = parser.parse(fp)

boltzmann.load_collisions(processes)

Do not worry if there are processes for species that you do not want to include: they will be ignored by BOLOS
without a performance penalty.

1.4 Setting the conditions

Now we have to set the conditions in our plasma. First, we set the molar fractions; for example for synthetic air we
do:

boltzmann.target[’N2’].density = 0.8
boltzmann.target[’O2’].density = 0.2

Note that this process requires that you have already loaded cross-sections for the targets that you are setting. Also,
BOLOS does not check if the molar fractions add to 1: it is the user’s responsibility to select reasonable molar fractions.

Next we set the gas temperature and the reduced electric field. BOLOS expect a reduced electric field in Vm^2 and
a temperature in eV. However, you can use some predefined constants if you prefer to think in terms of Kelvin and
Townsend. Here we set a temperature of 300K and a reduced electric field of 120 Td:

boltzmann.kT = 300 * solver.KB / solver.ELECTRONVOLT
boltzmann.EN = 120 * solver.TOWNSEND

After you set these conditions, you must tell BOLOS to update its internal state to take them into account. You must
do this whenever you change kT, EN or the underlying grid:

boltzmann.init()

1.5 Obtaining the EEDF

We have now everything in place to solve the Boltzmann equation. Since the solver is iterative, we must start with
some guess; it does not make much difference which one as long as it is not too unreasonable. For example, we can
start with Maxwell-Boltzmann distribution with a temperature of 2 eV:

4 Chapter 1. Tutorial
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fMaxwell = boltzmann.maxwell(2.0)

Now we ask boltzmann to iterate the solution until it is satisfied that it has converged:

f = boltzmann.converge(fMaxwell, maxn=100, rtol=1e-5)

Here maxn is the maximum number of iterations and rtol is the desired tolerance.

We now have a distribution function in f that is a reasonable approximation to the exact solution. However, we made
some arbitrary choices in order to calculate it and perhaps we may still get a more accurate one. For example, why did
we select a grid from 0 to 60 eV with 200 cells? Perhaps we should base our grid on the mean energy of electrons:

# Calculate the mean energy according to the first EEDF
mean_energy = boltzmann.mean_energy(f0)

# Set a new grid extending up to 15 times the mean energy.
# Now we use a quadritic grid instead of a linear one.
newgrid = grid.QuadraticGrid(0, 15 * mean_energy, 200)

# Set the new grid and update the internal
boltzmann.grid = newgrid
boltzmann.init()

# Calculate an EEDF in the new grid by interpolating the old one
finterp = boltzmann.grid.interpolate(f, gr)

# Iterate until we have a new solution
f1 = boltzmann.converge(finterp, maxn=200, rtol=1e-5)

1.6 Calculating transport coefficients and reaction rates

Often you are not interested in the EEDF itself but you are working with a fluid clode and you want to know the
transport coefficients and reaction rates as functions of temperature or E/n.

It’s quite easy to obtain the reduced mobility and diffusion rate once you have the EEDF:

mun = boltzmann.mobility(f1)
diffn = boltzmann.diffusion(f1)

This tells you the reduced mobility mu*n and diffusion D*n, both in SI units.

To calculate reaction rates, use solver.BoltzmannSolver.rate(). There are a couple of manners in which
you can specify the process. You can use its signature:

# Obtain the reaction rate for impact ionization of molecular nitrogen.
k = boltzmann.rate(f1, "N2 -> N2^+")

This is equivalent to the following sequence:

proc = boltzmann.search("N2 -> N2^+")[0]
k = boltzmann.rate(f1, proc)

Here we have first looked in the set of reactions contained in the boltzmann instance for a process matching the
signature “N2 -> N2^+”. solver.BoltzmannSolver.search() returns a process.Process instance
that you can then pass to solver.BoltzmannSolver.rate().

The methods solver.BoltzmannSolver.iter_all(), solver.BoltzmannSolver.iter_elastic()
and solver.BoltzmannSolver.iter_inelastic() let you iterate over the targets and processes con-

1.6. Calculating transport coefficients and reaction rates 5
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tained in a solver.BoltzmannSolver instance. (These are the processes that we loaded earlier with
soler.BoltzmannSolver.load_collisions())

for target, proc in boltzmann.iter_inelastic():
print "The rate of %s is %g" % (str(proc), boltzmann.rate(f1, proc))

1.7 Learn more

BOLOS is an ongoing effort and some of its features are not yet properly implemented or documented. If you want
to learn more you can go to the samples/ folder in the github repository. The code contains lots of (hopefully useful)
comments, so if you want to understand better how to use or extend BOLOS, you should also read that.

6 Chapter 1. Tutorial



CHAPTER 2

Frequently Asked Questions

2.1 Why another Boltzmann solver?

The low-temperature plasma community already has BOLSIG+, a highly optimized, user-friendly solver for the Boltz-
mann equation [HP2005]. BOLSIG+ is freely distributed by its authors, Hagelaar and Pitchford. Why did I write
BOLOS, another Boltzmann solver based on similar algorithms?

The simplest reply is that, as a BOLSIG+ user, I wanted to understand better what goes on beneath BOLSIG+ and the
best way to understand something is to do it yourself.

However, I also felt that an Open Source implementation would benefit the community. There are a number of
drawbacks to the way BOLSIG+ is packaged that sometimes limited or slowed down my own research. For example,
we only have a Windows version, whereas many of us now use Linux or Mac OS X as their platforms of choice. Also,
since BOLSIG+ is distributed only as binary package, it is difficult or impossible to integrate into other codes or to
make it part of an automated pipeline.

Finally, there is the old hacker ethic, where we tinker with each other’s code and tools and collaborate to improve
them. This is particularly relevant for scientists, since we all build on the work of others. Having an open source,
modern, Boltzmann solver may facilitate new improvements and its integration with other tools.

2.2 Why did you use Python?

Because my main purpose was to develop a simple, readable code in the hope that other people would take it and
perhaps improve it.

The code relies on the Numpy and SciPy libraries that interface with highly optimized, C or FORTRAN code.

2.3 What version(s) of Python does BOLOS support?

Presently, only 2.7. In future release, Python 3+ will be supported. Since BOLOS is a pure Python package, the
transition should be straightforward.

2.4 Can BOLOS read cross-sections in BOLSIG+ format?

Yes! You can use your cross-sections files from BOLSIG+ or from LxCat without changes. Any problem reading
these files will be treated as a bug.
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2.5 How fast is BOLOS?

I would say it’s reasobaly fast. It takes a few tenths of a second to solve the Boltzmann equation. The code was
heavily optimized to use numpy’s and scipy’s features, particularly regarding sparse matrices.

2.6 Are results the same as with BOLSIG+?

In most cases the difference in reaction rates or transport parameters is between 0.1% and 1%. My guess is that most
of the difference comes from the use of different grids but probably the growth-renormalization term is implemented
differently (Hagelaar and Pitchford are not very clear on this point).

Here is a comparison between nitrogen ionization rates in synthetic air as calculated by BOLOS and BOLSIG+:

You can find the complete set of comparisons for synthetic air here.

2.7 Feature X is not implemented: what can I do?

Yes, there are still many features that are not implemented in BOLOS. In particular, only the temporal growth model
is implemented and many parameters obtained from the EEDF are not yet implemented. I hope to add these things
gradually. If you are interested in a particular feature you can give it a shot: pull requests are welcome. Or you can
write me and I promise that I will look into it... but you know how tight all our agendas are.

2.8 If I use BOLOS for my research, which paper should I cite?

BOLOS follows the algorithm described by Hagelaar and Pitchford so you should definitely cite their paper [HP2005].

There is not yet any publication associated directly with BOLOS, so if you use it please link to its source code at
github.

coefficients and rate coefficients for fluid models*, G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol.
14 (2005) 722–733.

8 Chapter 2. Frequently Asked Questions
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CHAPTER 3

Bolos API reference

This page contains the documentation of the BOLOS API.

3.1 The solver Module

This module contains the main routines to load processes, specify the physical conditions and solve the Boltzmann
equation.

The data and calculations are encapsulated into the BoltzmannSolver class, which you have
to instantiate with a grid.Grid instance. Use BoltzmannSolver.load_collisions() or
BoltzmannSolver.add_process() to add processes with their cross-sections. Afterwards, set the den-
sity of each component with BoltzmannSolver.set_density() or BoltzmannSolver.target. The
method BoltzmannSolver.maxwell() gives you a reasonable initial guess for the electron energy distribution
function (EEDF) that you can then improve iteratively with BoltzmannSolver.converge(). Finally, methods
such as BoltzmannSolver.rate() or BoltzmannSolver.mobility() allow you to obtain reaction rates
and transport parameters for a given EEDF.

class bolos.solver.BoltzmannSolver(grid)
Bases: object

Class to solve the Boltzmann equation for electrons in a gas.

This class contains the required elements to specify the conditions for the solver and obtain the equilibrium
electron energy distribution function.

Parameters grid : grid.Grid

The grid in energies where the distribution funcition will be evaluated.

Examples

>>> import numpy as np
>>> from bolos import solver, grid
>>> grid.LinearGrid(0, 60., 400)
>>> bsolver = solver.BoltzmannSolver(grid)
>>> # Parse the cross-section file in BOSIG+ format and load it into the
>>> # solver.
>>> with open(args.input) as fp:
>>> processes = parser.parse(fp)
>>> bsolver.load_collisions(processes)
>>>

9
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>>> # Set the conditions. And initialize the solver
>>> bsolver.target[’N2’].density = 0.8
>>> bsolver.target[’O2’].density = 0.2
>>> bsolver.kT = 300 * co.k / co.eV
>>> bsolver.EN = 300.0 * solver.TOWNSEND
>>> bsolver.init()
>>>
>>> # Start with Maxwell EEDF as initial guess. Here we are starting with
>>> # with an electron temperature of 2 eV
>>> f0 = bsolver.maxwell(2.0)
>>>
>>> # Solve the Boltzmann equation with a tolerance rtol and maxn
>>> # iterations.
>>> f1 = bsolver.converge(f0, maxn=50, rtol=1e-5)

Attributes

ben-
ergy

(array of floats) Cell boundaries of the energy grid (set automatically at initialization). Equivalent to
grid.b.

ben-
ergy

(array of floats) Cell lengths of the energy grid (set automatically at initialization). Equivalent to
grid.d.

cenergy(array of floats) Cell centers of the energy grid (set automatically at initialization). Equivalent to
grid.c.

n (int) Number of cells in the energy grid (set automatically at initialization). Equivalent to grid.n.
kT (float) Gas temperature in eV. Must be set by the user.
EN (float) Reduced electric field in Townsend (1 Td is 1e-21 V m^2). Must be set by the user.
tar-
get

(dict) A dictionary with targets in the set of processes. The user needs to set the density (molar
fraction) of the desired targets using this dictionary. E.g. synthetic air is represented by

Methods

add_process(**kwargs) Adds a new process to the solver.
converge(f0[, maxn, rtol, delta0, m, full]) Iterates and attempted EEDF until convergence is reached.
diffusion(F0) Calculates the diffusion coefficient from a distribution function.
init() Initializes the solver with given conditions and densities of the target species.
iter_all() Iterates over all processes.
iter_elastic() Iterates over all elastic processes.
iter_growth() Iterates over all processes that affect the growth of electron density, i.e.
iter_inelastic() Iterates over all inelastic processes.
iter_momentum()
iterate(f0[, delta]) Iterates once the EEDF.
load_collisions(dict_processes) Loads the set of collisions from the list of processes.
maxwell(kT) Calculates a Maxwell-Boltzmann distribution function.
mean_energy(F0) Calculates the mean energy from a distribution function.
mobility(F0) Calculates the reduced mobility (mobility * N) from the EEDF.
rate(F0, k[, weighted]) Calculates the rate of a process from a (usually converged) EEDF.
search(signature[, product, first]) Search for a process or a number of processes within the solver.
set_density(species, density) Sets the molar fraction of a species.

add_process(**kwargs)
Adds a new process to the solver.

10 Chapter 3. Bolos API reference
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Adds a new process to the solver. The process data is passed with keyword arguments.

Parameters type : string

one of “EFFECTIVE”, “MOMENTUM”, “EXCITATION”, “IONIZATION” or “AT-
TACHMENT”.

target : string

the target species of the process (e.g. “O”, “O2”...).

ratio : float

the ratio of the electron mass to the mass of the target (for elastic/momentum reactions
only).

threshold : float

the energy threshold of the process in eV (only for inelastic reactions).

data : array or array-like

cross-section of the process array with two columns: column 0 must contain energies in
eV, column 1 contains the cross-section in square meters for each of these energies.

Returns process : process.Process

The process that has been added.

See also:

load_collisions Add a set of collisions.

Examples

>>> import numpy as np
>>> from bolos import solver, grid
>>> grid.LinearGrid(0, 60., 400)
>>> solver = BoltzmannSolver(grid)
>>> # This is an example cross-section that decays exponentially
>>> energy = np.linspace(0, 10)
>>> cross_section = 1e-20 * np.exp(-energy)
>>> solver.add_process(type="EXCITATION", target="Kriptonite",
>>> ratio=1e-5, threshold=10,
>>> data=np.c_[energy, cross_section])

converge(f0, maxn=100, rtol=1e-05, delta0=100000000000000.0, m=4.0, full=False, **kwargs)
Iterates and attempted EEDF until convergence is reached.

Parameters f0 : array of floats

Initial EEDF.

maxn : int

Maximum number of iteration until the convergence is declared as failed (default: 100).

rtol : float

Target tolerance for the convergence. The iteration is stopped when the difference be-
tween EEDFs is smaller than rtol in L1 norm (default: 1e-5).

delta0 : float

3.1. The solver Module 11
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Initial value of the iteration parameter. This parameter is adapted in succesive iterations
to improve convergence. (default: 1e14)

m : float

Attempted reduction in the error for each iteration. The Richardson extrapolation at-
tempts to reduce the error by a factor m in each iteration. Larger m means faster con-
vergence but also possible instabilities and non-decreasing errors. (default: 4)

full : boolean

If true returns convergence information besides the EEDF.

Returns f1 : array of floats

Final EEDF

iters : int (returned only if full is True)

Number of iterations required to reach convergence.

err : float (returned only if full is True)

Final error estimation of the EEDF (must me smaller than rtol).

Notes

If convergence is not achieved after maxn iterations, an exception of type ConvergenceError is raised.

diffusion(F0)
Calculates the diffusion coefficient from a distribution function.

Parameters F0 : array of floats

The EEDF used to compute the diffusion coefficient.

Returns diffn : float

The reduced diffusion coefficient of electrons in SI units..

See also:

mobility Find the reduced mobility from the EEDF.

grid

init()
Initializes the solver with given conditions and densities of the target species.

This method does all the work previous to the actual iterations. It has to be called whenever the densities,
the gas temperature or the electric field are changed.

Notes

The most expensive calculations in this method are cached so they are not repeated in each call. Therefore
the execution time may vary wildly in different calls. It takes very long whenever you change the solver’s
grid; therefore is is strongly recommended not to change the grid if is not strictly neccesary.

iter_all()
Iterates over all processes.

Returns An iterator over (target, process) tuples.

12 Chapter 3. Bolos API reference
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iter_elastic()
Iterates over all elastic processes.

Returns An iterator over (target, process) tuples.

iter_growth()
Iterates over all processes that affect the growth of electron density, i.e. ionization and attachment.

Returns An iterator over (target, process) tuples.

iter_inelastic()
Iterates over all inelastic processes.

Returns An iterator over (target, process) tuples.

iter_momentum()

iterate(f0, delta=100000000000000.0)
Iterates once the EEDF.

Parameters f0 : array of floats

The previous EEDF

delta : float

The convergence parameter. Generally a larger delta leads to faster convergence but a
too large value may lead to instabilities or slower convergence.

Returns f1 : array of floats

A new value of the distribution function.

Notes

This is a low-level routine not intended for normal uses. The standard entry point for the iterative solution
of the EEDF is the BoltzmannSolver.converge() method.

load_collisions(dict_processes)
Loads the set of collisions from the list of processes.

Loads a list of dictionaries containing processes.

Parameters dict_processes : List of dictionary or dictionary-like elements.

The processes to add to this solver class. See :method:‘solver.add_process‘ for the
required fields of each of the dictionaries.

Returns processes : list

A list of all added processes, as process.Process instances.

See also:

add_process Add a single process, with its cross-sections, to this solver.

maxwell(kT)
Calculates a Maxwell-Boltzmann distribution function.

Parameters kT : float

The electron temperature in eV.

Returns f : array of floats

3.1. The solver Module 13
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A normalized Boltzmann-Maxwell EEDF with the given temperature.

Notes

This is often useful to give a starting value for the EEDF.

mean_energy(F0)
Calculates the mean energy from a distribution function.

Parameters F0 : array of floats

The EEDF used to compute the diffusion coefficient.

Returns energy : float

The mean energy of electrons in the EEDF.

mobility(F0)
Calculates the reduced mobility (mobility * N) from the EEDF.

Parameters F0 : array of floats

The EEDF used to compute the mobility.

Returns mun : float

The reduced mobility (mu * n) of the electrons in SI units (V / m / s).

See also:

diffusion Find the reduced diffusion rate from the EEDF.

Examples

>>> mun = bsolver.mobility(F0)

rate(F0, k, weighted=False)
Calculates the rate of a process from a (usually converged) EEDF.

Parameters F0 : array of floats

Distribution function.

k : process.Process or string

The process whose rate we want to calculate. If k is a string, it is passed to search()
to obtain a process instance.

weighted : boolean, optional

If true, the rate is multiplied by the density of the target.

Returns rate : float

The rate of the given process according to F0.

See also:

search Find a process that matches a given signature.

14 Chapter 3. Bolos API reference
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Examples

>>> k_ionization = bsolver.rate(F0, "N2 -> N2^+")

search(signature, product=None, first=True)
Search for a process or a number of processes within the solver.

Parameters signature : string

Signature of the process to search for. It must be in the form “TARGET -> RESULT [+
RESULT2]...”.

product : string

If present, the first parameter is interpreted as TARGET and the second parameter is the
PRODUCT.

first : boolean

If true returns only the first process matching the search; if false returns a list of them,
even if there is only one result.

Returns processes : list or process.Process instance.

If first was true, returns the first process matching the search. Otherwise returns a
(possibly empty) list of matches.

Examples

>>> ionization = solver.search("N2 -> N2^+")[0]
>>> ionization = solver.search("N2", "N2^+", first=True)

set_density(species, density)
Sets the molar fraction of a species.

Parameters species : str

The species whose density you want to set.

density : float

New value of the density.

Examples

These are two equivalent ways to set densities for synthetic air:

Using set_density():

bsolver.set_density(’N2’, 0.8)
bsolver.set_density(’O2’, 0.2)

Using bsolver.target:

bsolver.target[’N2’].density = 0.8
bsolver.target[’O2’].density = 0.2

exception bolos.solver.ConvergenceError
Bases: exceptions.Exception

3.1. The solver Module 15
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3.2 The grid Module

Routines to handle different kinds of grids (linear, quadratic, logarithmic)

class bolos.grid.AutomaticGrid(grid, f0, delta=0.0001)
Bases: bolos.grid.Grid

A grid set automatically using a previous estimation of the EEDF to fix a peak energy.

Methods

cell(x) Returns the cell index containing the value x.
interpolate(f, other) Interpolates into this grid an eedf defined in another grid.

class bolos.grid.GeometricGrid(x0, x1, n, r=1.1)
Bases: bolos.grid.Grid

A grid with geometrically progressing spacing. To be more precise, here the length of cell i+1 is r times the
length of cell i.

Methods

cell(x) Returns the cell index containing the value x.
f(x)
finv(w)
interpolate(f, other) Interpolates into this grid an eedf defined in another grid.

f(x)

finv(w)

class bolos.grid.Grid(x0, x1, n)
Bases: object

Class to define energy grids.

This class encapsulates the information about an energy grid.

Parameters x0 : float

Lowest boundary energy.

x1 : float

Highest energy boundary.

n : float

Number of cells

See also:

LinearGrid A grid with linear spacings (constant cell length).

QuadraticGrid A grid with quadratic spacings (linearly increasing cell length).

GeometricGrid A grid with geometrically increasing cell lengths.
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LogGrid A logarithmic grid.

Notes

This is a base class and you usually do not want to instantiate it directly. You can define new grid classes
by subclassing this class and then defining an f method that maps energy to a new variable y that is divided
uniformly.

Methods

cell(x) Returns the cell index containing the value x.
interpolate(f, other) Interpolates into this grid an eedf defined in another grid.

cell(x)
Returns the cell index containing the value x.

Parameters x : float

The value x which you want to localize.

Returns index : int

The index to the cell containing x

interpolate(f, other)
Interpolates into this grid an eedf defined in another grid.

Parameters f : array or array-like

The original EEDF

other : Grid

The old grid, where f is defined.

Returns fnew : array or array-like

An EEDF defined in our grid.

class bolos.grid.LinearGrid(x0, x1, n)
Bases: bolos.grid.Grid

A grid with linear spacing.

Methods

cell(x) Returns the cell index containing the value x.
f(x)
finv(w)
interpolate(f, other) Interpolates into this grid an eedf defined in another grid.

f(x)

finv(w)

class bolos.grid.LogGrid(x0, x1, n, s=10.0)

3.2. The grid Module 17
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Bases: bolos.grid.Grid

A pseudo-logarithmic grid. We add a certain s to the variable to avoid log(0) = -inf. The grid is actually
logarithmic only for x >> s.

Methods

cell(x) Returns the cell index containing the value x.
f(x)
finv(w)
interpolate(f, other) Interpolates into this grid an eedf defined in another grid.

f(x)

finv(w)

class bolos.grid.QuadraticGrid(x0, x1, n)
Bases: bolos.grid.Grid

A grid with quadratic spacing.

Methods

cell(x) Returns the cell index containing the value x.
f(x)
finv(w)
interpolate(f, other) Interpolates into this grid an eedf defined in another grid.

f(x)

finv(w)

bolos.grid.mkgrid(kind, *args, **kwargs)
Builds and returns a grid of class kind. Possible values are ‘linear’, ‘lin’, ‘quadratic’, ‘quad’, ‘logarithmic’,
‘log’.

3.3 The parser Module

This module contains the code required to parse BOLSIG+-compatible files. To make the code re-usabe in other
projects it is independent from the rest of the BOLOS code.

Most user would only use the method parse() in this module, which is documented below.

bolos.parser.parse(fp)
Parses a BOLSIG+ cross-sections file.

Parameters fp : file-like

A file object pointing to a Bolsig+-compatible cross-sections file.

Returns processes : list of dictionaries

A list with all processes, in dictionary form, included in the file.

18 Chapter 3. Bolos API reference
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Indices and tables

• genindex

• modindex

• search
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